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ABSTRACT 

Path planning method for mobile robots based on 
two dimensional cellular automata is proposed. The 

method is appropriate for multi-robot problems as 
well as dynamic environments. In order to develop 

the planning method, environment of the robot 

discretized by a rectangular grid and the automata 

with four states is defined including Robot cell, Free 

cell and Obstacle cell and Best goal directing cell.  

Evolution rule of automata are proposed in such a 

way that at each step time the robot cell is exchanged 

with best goal directing cell.  

 

Keywords - Cellular automata, Computational 

Intelligence, Mobile robot, Path Planning 

I. INTRODUCTION 

Path-planning problem for a mobile robot means 

finding a free path from an initial position to a goal 

position in the configuration space [1]. The robot 

must move around obstacles without colliding them 

and reach into its goal. There are plenty of techniques 

for path planning of mobile robots if the map of the 

environment and obstacles is completely known and 

off-line planning is acceptable. Under these 

assumptions, existing path planning methods can fall 

into three main categories [2]: cell decomposition, 

road map and potential field methods. In cell 

decomposition methods, configuration space is 

decomposed into some cells where by connecting 

neighboring cells a graph is constructed. This 

connectivity graph should be searched in order to 

find appropriate path from initial cell to goal cell. In 

roadmap methods a network of 1-D curves is made to 

illustrate connectivity of the free spaces. The network 

is afterwards considered as a set of standard paths in 

which the path of robot must be found. In the 

potential field methods, robot's environment is 

modeled as an artificial potential field where 

attractive magnetic potentials are assigned for robots 

and goal and repulsive potentials are assigned to 

robots and obstacles. 

In all of above approaches a comprehensive and 

precise representation of configuration space is 

required which by itself yields large computational 

cost in offline planning. In general, the complexity 

rises exponentially with the number of degrees of 

freedom of a robot and the dimensions of 

configuration space [4]. Moreover dynamic 

environments would impose much more complicated 

problem. Multi-robot multi-goal assumption would 

also increase the complexity of problem.  

In summary, finding a real time path planning 

method with satisfactory performance in dynamic 

multi-robot multi-goal environments has been an 

extremely difficult task. None of existing works in 

this area (see the next section) are applicable for 

dynamic multi-robot multi-goal environments as well 

as being real time and using only local 

representations of the environment. The aim of this 

paper is to develop cellular automata (CA) based path 

planning algorithm in order to address this challenge.  

The rest of this paper is organized as the sequel. The 

next section includes related research to this paper. In 

Section III main concept of cellular automata is 

introduced. In forth section the proposed path 

planning method is devised. Section V and Section 
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VI include simulation results and conclusions 

respectively. 

II. RELATED WORKS  

Because of highly nonlinear and computationally 

expensive properties of path planning problem of 

mobile robots, developing efficient planning methods 

has been on focus of interest. Varity of techniques 

based on computational intelligent algorithms have 

been used. Genetic algorithms [5], fuzzy systems [6], 

ant colonies [7], particle swarm optimization [9] and  

artificial bee colonies [10] are examples.  

Von Neumann [11] developed Cellular Automata as 

simple models of spatially distributed processes. The 

idea is then extended and outspreaded by 

Burks[12][13]. A cellular automaton is a grid 

composed of set of cells with discrete possible values 

where each cell evolve as a function of time 

according to states of neighboring cells and based on 

a set of rules. Cells in CA are simple components 

with local links; however, CA as a multi-agent 

system has the ability of doing complicated 

computations in a highly robust and efficient manner. 

Consequently, CA has become a popular modeling 

system and computational tool in mathematics, 

natural science, computer science and technologies. 

Training CA to perform image processing [14], 

design of reconfigurable robots [15], prediction of 

protein sub-cellular location [16]  modeling 

phenomena of urban growth [17] and modeling 

earthquake activity features [18] are some examples. 

CA have also been used for computational tasks and 

high speed simulations in scientific models [19]. 

Because of capabilities in distributed computation 

and their local computation characteristics, CA is a 

good candidate to act as a fast and reliable path 

planning tool. Shu and Buxton introduced a basic CA 

based path planning algorithm for mobile robots in 

simple environments [20]. A collision-free planning 

algorithm for a diamond-shaped robot was developed 

by Tzionas et al [21]. In their work, free space is 

mapped onto the Voronoi diagram which is 

constructed through the time evolution of cellular 

automata.  In [22] it was illustrated that an efficient 

computation method can be developed by cellular 

automata in order to find a collision free path from 

initial to goal configuration on a physical space 

occupied by obstacles in arbitrary locations. 

Marchese presented a reactive path-planning method 

for a non-holonomic mobile robot by multilayered 

cellular automata [23].  

III. CELLULAR AUTOMATA 

Cellular automata is a d-dimensional colored grid 

composed of cells where each cell can be in one of a 

finite number of states (colors) [11]. States could be 

some integer numbers or some symbols. Cells are 

finite-state machines those can be specified by index 

n where n=1,…,N. In a two dimensional I×J 

automata (d=2), for example, we have N=I×J. Each 

cell may interact with adjacent cells in order to 

update its state. CA is updated based on some local 

rule that is identical for all cells [11][12]. t

nS  denotes 

the state of a cell n at time step t. In CA's rule, current 

states of a cell and the states of its neighborhood is 

delivered as inputs and the next state of central cell is 

returned as output. Rules may be demonstrated by a 

function or by a lookup table. Here, definition of 

neighborhood is a very important concept. This 

definition is straightforward in one-dimensional grids 

but in two dimensional automata, different definitions 

of neighborhood exist. For example Neumann 

neighborhood considers all adjacent cells of a central 

cell as neighbors and Moore neighborhood only 

considers the top, bottom, left and right cells as 

neighbors (See Fig.1). In this paper we will use 

Neumann neighborhoods.  

Fig. 2 shows a one-dimensional (d=1) nearest 

neighbor (with radius r=1) cellular automata with 

two possible states (binary) and with grid length 

N=8. The grid and evolution rule table are illustrated. 

Fig.1 Two definitions of neighborhood of central cell (C)  

in Cellular Automata: Neumann neighborhood (left) and 

Moor neighborhood (right)       

C C 
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Network  

t=0  1 0 1 0 1 1 0 1 

 
 
 

t=1  0 1 0 1 1 1 1 0 

 Fig. 2. Binary one-dimensional cellular automata 

Rule Base 

Neighborhood 000 001 010 011 100 101 110 111 

Output 0 01 01 1 0 1 1 1 

 

The progress of evolution is shown at two time steps. 

IV. PATH PLANNING ALGORITHM  

A. Set up of Cellular Automata 

In this section we describe our path planning problem 

of mobile robot and establish a cellular automaton in 

order in order to appropriately modeling of the 

problem. We assumed that the robot can recognize its 

own position vector T

rrr yxP ],[


 
at each step time. 

It is also assumed that the robot knows goal position 

vector 
T

ggg yxP ],[


 and by a mechanism with short 

sensing depth it can identify if the adjacent cells are 

free cells or not. The sensory system can be one 

rotary sonar sensor or 8 fixed sensors mounted on the 

robot. To handle probable non-homonymic 

characteristics, the robot is encircled into a circular 

robot as shown in Fig. 3.a and it is assumed to be a 

free flying object. The work-space is divided into a 

rectangular grid of cells (see Fig. 3.b) so that the 

robot can be entirely placed inside a cell. We have so 

far built two-dimensional cellular automata with 

three possible states including free cell, obstacle cell 

and robot cell represented by F, O, R, respectively. 

Now we should find a way to incorporate relative 

position of the robot and goal in our automata. To 

this end we define the best goal directing cell as the 

following:  

Definition: The best goal directing cell is the closest 

free cell to the goal in the neighborhood of the robot 

cell.  

If we show the best goal directing cell by B, our 

automata would have four possible states for each 

cell: {F, O, R, B}. Fig. 4 shows a schematic view of 

CA constructed in accordance to workspace of Fig. 

3.b.   

The robot has to determine the best goal directing cell 

in each step of its evolution. In order to develop a 

routine of finding the best directing cell, we assign 

direction vectors to adjacent cells as Fig. 5. Now, it is 

easy to discover the best goal directing cell based on 

angle between those direction vectors and the vector 

a. The robot (considering 
different orientations) 

can be encircled 

         

         

         

         

         

       G  

 

Robot 

Obstacles 

b. Robot cell, obstacle cells and free 

cells in the work-space 

 
 
Fig 3. Building up path planner cellular automata 
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Fig 4. Cellular automata corresponding to the robot 

workspace of Fig 2.b with four states: {F, O, R, B}  

TD ]1,1[1


 TD ]0,1[2


 TD ]1,1[3


 

TD ]1,0[4


 Robot Cell TD ]1,0[5


 

TD ]1,1[6


 TD ]0,1[7


 TD ]1,1[8


 

 
Fig. 5. Direction vectors correspond to adjacent cells of the 

robot cell. 
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rg PP


. This angle can be calculated using dot 

product approach. Among eight neighboring cells 

(k=1,..,8), the cell corresponding to the maximum 

value of the dot product would be marked as B. Fig. 6 

illustrates the routine of finding B cell.  

B. Evolution Rules  

After establishing cellular automata for robot 

environment, appropriate updating rules have to be 

devised to direct the robot toward its goal without 

colliding with obstacles. It is preferred that the 

evolution rules use only local information and do not 

need a complete representation of the configuration 

space. 

Evolution rules presented in this section are based on 

a simple sense: "robot cell R moves into the best goal 

directing cell B in each step and leaves a free cell F 

in its location". This can be implemented by the 

pseudo code represented in Fig. 7.  For example, if 

we apply this rule to the CA of Fig. 4 the block of 

cells marked by gray is updated as the sequel: 

RFO

FFF

OFF

BFO

FRF

OFF

 

and the state of other cells remain unchanged. It is 

noteworthy to mention that in a single robot problem 

only the states of two cells are changed in each step 

time. 

If the automaton is evolved according to rules of Fig. 

7, the robot cell would become more and more close 

to goal cell at each step time. Since the number of 

cells of the grid is finite there are no concave 

obstacles, after a finite time steps the robot cell 

would meet the goal cell.  

Identifying the best goal directing cell is a crucial 

requirement in the updating rule of Fig. 7. Routine of 

Fig. 5 is used as a subroutine to handle this 

requirement.         

C. Multi Robot Environments  

The path planning method introduced in previous 

subsections can be easily generalized for multi-robot 

multi-goal problems. To this end, for example in a 

two-robot problem, possible states of cells should be 

extended to {F, O, B, R1, R2}.   The rule of Fig. 7 

would be sufficient to achieve a successful path 

planning automata if it is sequentially applied to 

robots. For approaching each robot to its own goal, 

the same inference of single-robot problem still 

holds. To verify that the robots do not collide, 

without loss of generality, consider two robots in Fig. 

8. If we apply the rules to robot R1 in Fig. 8.a, it 

moves into cell B which is assumed to be the central 

cell in our case. Now in Fig. 8.b. that old B cell is not 

a free cell any longer and will not be treated as new B 

cell for R2. 

 

 

while Robot cell (R)  Goal Cell (G)  do 

         for n=1:N 

             if 
t

nS ==R 

                find best goal directing cell:
t

jS =B 

               
t

nS =R; 

               
t

nS =F;  

            elseif 
t

nS  R 

               
t

n

t

n SS 1
 

 
Fig. 7. Pseudo code of evolutionary rule of CA 

 

Fig. 6. Pseudo code of subroutine of finding the best goal 

directing cell. K  denotes cardinality of set K.     
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R2 R1 F 

F F O 

F O F 

 

R2 F F 

F R1 O 

F O F 

 a. Before applying the rules 

 Fig. 8. The robots do not collide with each other in multi-

robot problem 

 

b. After applying the rules for 

R1 

 

 

V. SIMULATION RESULTS 

In the first stage of simulations, we considered a 

robot environment shown in Fig. 9. A model is 

constructed in MATLAB. The proposed CA based 

planning method is applied for two different initial-

goal sets. Paths resulted by the algorithm are 

illustrated Fig. 9 and imply that the algorithm has 

been able to find appropriate path witch is the 

shortest path in approximation.  

In the second stage of simulations, two robots 

assumed to be located at two different initial points 

where their goals are different. Fig. 10.a and Fig. 

10.b depict paths of the robots obtained by applying 

the algorithm to the problem. To verify that the 

robots do not collide with each other, positions Robot 

cells in different time steps are shown in Fig. 10.c. It 

is obvious that the robots are not in the same cell at 

the same time, while each travels along an acceptable 

path.     

VI. CONCLUSIONS 

Because of capabilities of CA in local evolution and 

high-speed parallel computation, it was employed to 

be basis of an online and real-time path planning 

technique for mobile robots. The work-space of robot 

was modeled as two dimensional cellular automata 

with four possible states: Robot cell, Free cell, 

Obstacle cell and the Best goal directing cell. It is 

assumed that the robot has a short sensing and only is 

able to identify states of only adjacent cells. Based on 

a dot product of goal cell vector and some direction 

vectors, updating rules of the automata was 

constructed to direct the robot into a cell which is 

nearest to the goal. The method is a real-time method 

applicable for both single-robot and multi-robot 

problems. Significance of the proposed algorithms 

was verified by simulations in MATLAB.   

This research can be completed in future by 

extending the proposed method for concave obstacles 

and finding a method in order to efficiently 

implement it.  

 

Fig. 9. Simulation of single robot problem for two set of 

initial-goal points. Paths created using proposed CA 

based algorithm. (∆ shows goal points) 

 

  

a. Path of Robot R1                             

b. Path of robot R2  

 
    a. Path of robot R1                         b. Path of Robot R2 

     

 

Fig. 10. Two robot problem 

c. Position of robots R1 (o) and R2 (*)in different time steps. 

The robots are not in the same cell at the same time. 
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